1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
| !****************************************************
! 重回帰式計算(説明(独立)変数2個限定)
! * 一旦、平方和/積和の行列を作成してから連立方程式
! を解くのではなく、直接、偏微分後の連立方程式を解く。
!
! date name version
! 2019.06.01 mk-mode.com 1.00 新規作成
!
! Copyright(C) 2018 mk-mode.com All Rights Reserved.
!****************************************************
!
module const
! SP: 単精度(4), DP: 倍精度(8)
integer, parameter :: SP = kind(1.0)
integer(SP), parameter :: DP = selected_real_kind(2 * precision(1.0_SP))
end module const
module comp
use const
implicit none
private
public :: calc_reg_multi
contains
! 重回帰式計算
! * 説明変数2個限定
!
! :param(in) real(8) x(:, 2): 説明変数配列
! :param(in) real(8) y(:): 目的変数配列
! :param(out) real(8) c: 定数
! :param(out) real(8) v(2): 係数
subroutine calc_reg_multi(x, y, c, v)
implicit none
real(DP), intent(in) :: x(:, :), y(:)
real(DP), intent(out) :: c, v(2)
integer(SP) :: s_x1, s_x2, s_y, i
real(DP) :: sum_x1, sum_x1x1, sum_x1x2
real(DP) :: sum_x2, sum_x2x1, sum_x2x2
real(DP) :: sum_y, sum_x1y, sum_x2y
real(DP) :: mtx(3, 4)
s_x1 = size(x(:, 1))
s_x2 = size(x(:, 2))
s_y = size(y)
if (s_x1 == 0 .or. s_x2 == 0 .or. s_y == 0) then
print *, "[ERROR] array size == 0"
stop
end if
if (s_x1 /= s_y .or. s_x2 /= s_y) then
print *, "[ERROR] size(X) != size(Y)"
stop
end if
sum_x1 = sum(x(:, 1))
sum_x2 = sum(x(:, 2))
sum_x1x1 = sum(x(:, 1) * x(:, 1))
sum_x1x2 = sum(x(:, 1) * x(:, 2))
sum_x2x1 = sum_x1x2
sum_x2x2 = sum(x(:, 2) * x(:, 2))
sum_y = sum(y)
sum_x1y = sum(x(:, 1) * y)
sum_x2y = sum(x(:, 2) * y)
mtx(1, :) = (/real(s_x1, DP), sum_x1, sum_x2, sum_y/)
mtx(2, :) = (/ sum_x1, sum_x1x1, sum_x1x2, sum_x1y/)
mtx(3, :) = (/ sum_x2, sum_x2x1, sum_x2x2, sum_x2y/)
call gauss_e(3, mtx)
c = mtx(1, 4)
v = mtx(2:3, 4)
end subroutine calc_reg_multi
! Gaussian elimination
!
! :param(in) integer(4) n: 元数
! :param(inout) real(8) a(n,n+1): 係数配列
subroutine gauss_e(n, a)
implicit none
integer(SP), intent(in) :: n
real(DP), intent(inout) :: a(n, n + 1)
integer(SP) :: i, j
real(DP) :: d
! 前進消去
do j = 1, n - 1
do i = j + 1, n
d = a(i, j) / a(j, j)
a(i, j+1:n+1) = a(i, j+1:n+1) - a(j, j+1:n+1) * d
end do
end do
! 後退代入
do i = n, 1, -1
d = a(i, n + 1)
do j = i + 1, n
d = d - a(i, j) * a(j, n + 1)
end do
a(i, n + 1) = d / a(i, i)
end do
end subroutine gauss_e
end module comp
program regression_multi
use const
use comp
implicit none
character(9), parameter :: F_INP = "input.txt"
integer(SP), parameter :: UID = 10
real(DP) :: c, v(2)
integer(SP) :: n, i
character(20) :: f
real(DP), allocatable :: x(:, :), y(:)
! IN ファイル OPEN
open (UID, file = F_INP, status = "old")
! データ数読み込み
read (UID, *) n
! 配列用メモリ確保
allocate(x(n, 2))
allocate(y(n))
! データ読み込み
do i = 1, n
read (UID, *) x(i, :), y(i)
end do
write (f, '("(A, ", I0, "F8.2, A)")') n
print f, "説明変数 X(1) = (", x(:, 1), ")"
print f, "説明変数 X(2) = (", x(:, 2), ")"
print f, "目的変数 Y = (", y, ")"
print '(A)', "---"
! IN ファイル CLOSE
close (UID)
call calc_reg_multi(x, y, c, v)
print '(A, F14.8)', "定数項 = ", c
print '(A, F14.8)', "係数-1 = ", v(1)
print '(A, F14.8)', "係数-2 = ", v(2)
! 配列用メモリ解放
deallocate(x)
deallocate(y)
end program regression_multi
|